Dissociation of the Opioid Receptor Mechanisms that Control Mechanical and Heat Pain
نویسندگان
چکیده
Delta and mu opioid receptors (DORs and MORs) are inhibitory G protein-coupled receptors that reportedly cooperatively regulate the transmission of pain messages by substance P and TRPV1-expressing pain fibers. Using a DOReGFP reporter mouse we now show that the DOR and MOR are, in fact, expressed by different subsets of primary afferents. The MOR is expressed in peptidergic pain fibers, the DOR in myelinated and nonpeptidergic afferents. Contrary to the prevailing view, we demonstrate that the DOR is trafficked to the cell surface under resting conditions, independently of substance P, and internalized following activation by DOR agonists. Finally, we show that the segregated DOR and MOR distribution is paralleled by a remarkably selective functional contribution of the two receptors to the control of mechanical and heat pain, respectively. These results demonstrate that behaviorally relevant pain modalities can be selectively regulated through the targeting of distinct subsets of primary afferent pain fibers.
منابع مشابه
Venlafaxine Attenuates Heat Hyperalgesia Independent of Adenosine or Opioid System in a Rat Model of Peripheral Neuropathy
Primarily opioidergic and adenosine mechanisms are considered to be involved in the antinociceptive effects of antidepressants. This study was designed to determine the efficacy of acute venlafaxine administration in alleviating symptoms of neuropathic pain and the role of endogenous adenosine and opioid systems in this effect of venlafaxine. We have evaluated the effect of caffeine, a non-sele...
متن کاملVenlafaxine Attenuates Heat Hyperalgesia Independent of Adenosine or Opioid System in a Rat Model of Peripheral Neuropathy
Primarily opioidergic and adenosine mechanisms are considered to be involved in the antinociceptive effects of antidepressants. This study was designed to determine the efficacy of acute venlafaxine administration in alleviating symptoms of neuropathic pain and the role of endogenous adenosine and opioid systems in this effect of venlafaxine. We have evaluated the effect of caffeine, a non-sele...
متن کاملEffect of the cholinergic and opioid receptor mechanisms on nicotine-induced analgesia
In this study, we investigated the effect of nicotinic receptor agonists and antagonists on the analgesic response to morphine in the formalin test. In experiments conducted in mice, nicotine produced an early dose-dependent analgesic effect. At a dose of 0.5 mg/kg, mecamylamine, a nicotinic receptor inhibitor, suppressed the analgesic effect induced by 0.1 mg/kg nicotine in both stages of th...
متن کاملبررسی اثر و مکانیسم های اوپیوییدی و دوپامینرژیک دکسترومتورفان بر پاسخ درد ناشی از صفحه داغ در موش
Background and purpose : Dextromethorphan is a non-competitive NMDÂ receptor antagonist in the glutamatergic system with over 47 years of clinical usage experience as an over-the counter antitussive drug. We previously demonstrated that dextromethorphan modulates the pain threshold in the mouse acetic acid (0.6%,intraperitonealy)-induced writhing test (a tonic and chemical model for chronic p...
متن کاملInteraction of NMDA and opioid receptors on thermal hyperalgesia and mechanical allodynia in two models of neuropathic pain
The use of multiple loose ligations of the rat sciatic nerve has been proposed as a model for the study of allodynia and hyperalgesia. This pain hypersensitivity results from both an increase in the peripheral and central sensitization. The evidence indicating that the development of neuropathic thermal hyperalgesia and mechanical allodynia requires activation of spinal cord NMDA receptors. NMD...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Cell
دوره 137 شماره
صفحات -
تاریخ انتشار 2009